

16TH EUROPEAN CONFERENCE ON

EARTHQUAKE ENGINEERING THESSALONIKI

18 - 21 JUNE 2018

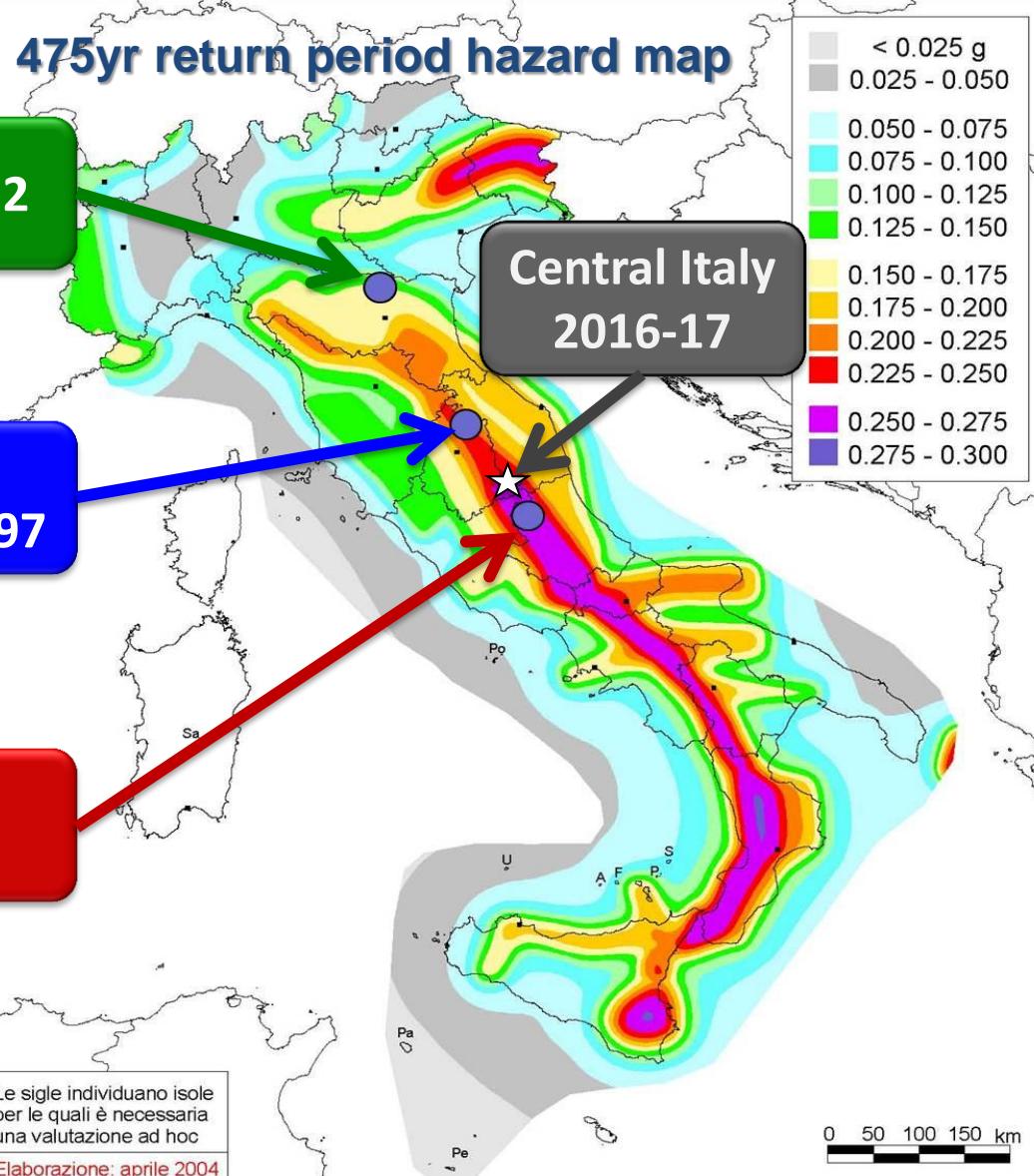
The 2016–2017 Central Apennines Seismic Sequence: Analogies and Differences with Recent Italian Earthquakes

Prof. Mauro Dolce
Italian Department of Civil Protection &
University of Naples, Federico II

PROTEZIONE CIVILE
Presidenza del Consiglio dei Ministri
Dipartimento della Protezione Civile

Main scientific features and technical emergency activities of the 2016-2017 Central Italy seismic sequence

compared to the recent strongest Italian earthquake sequences:


- 1997 Umbria-Marche (Max MI 5.9, Mw 6.0)
- 2009 Abruzzo (Max MI 5.9, Mw 6.1)
- 2012 Emilia (Max MI 5.9, Mw 5.9)

pointing out analogies and differences

Mappa di pericolosità sismica del territorio nazionale

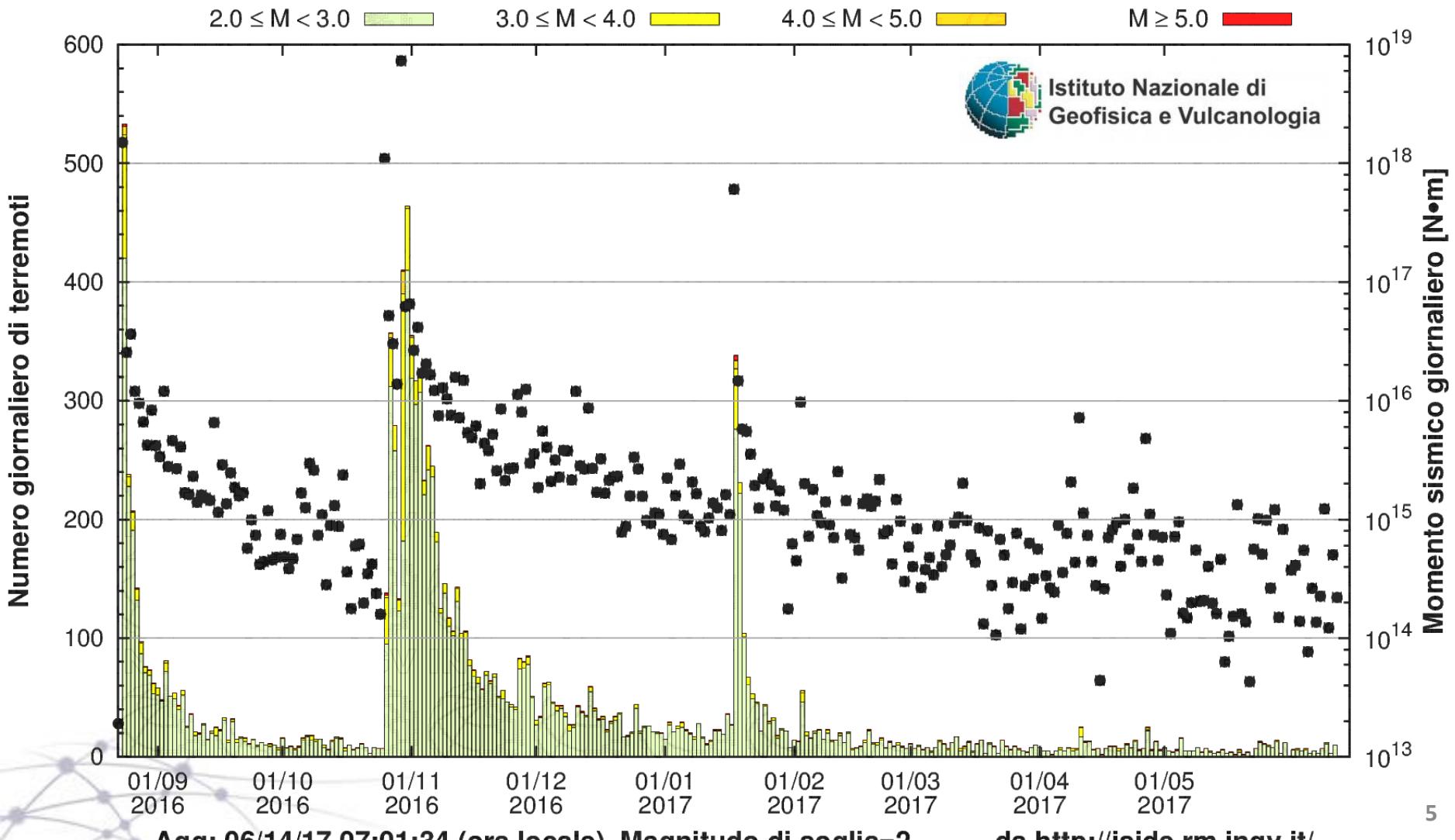
(riferimento: Ordinanza PCM del 28 aprile 2006 n.3519, All.1b)
espressa in termini di accelerazione massima del suolo
con probabilità di eccedenza del 10% in 50 anni
riferita a suoli rigidi ($V_{s30} > 800$ m/s; cat.A, punto 3.2.1 del D.M. 14.09.2005)

www.protezionecivile.gov.it

1. Umbria-Marche
Sept. 26, 1997,
ag=0.15-0.25g
2. Abruzzo
April 6, 2009,
ag=0.20-0.275g
3. Emilia-Lombardia-Veneto
May 20, 2012,
ag=0.125-0.175g
4. Central Italy
August 24, 2016,
ag=0.15-0.275g

The August 24th, 2016, MI 6.0-Mw 6.0 Earthquake

M. Dolce


www.protezionecivile.gov.it

- On **August 24th, 2016**, at 3:36 a.m., a strong earthquake (**MI 6.0, Mw 6.0, depth 8 km**) occurred along the Apennines Chain, Central Italy.
- Disruption occurred in three small municipalities, **Amatrice, Accumoli and Arquata**.
- Observed intensities attained the degree **X-XI** on the **MCS scale** and **X** on the **EMS scale** (INGV).
- **299 fatalities**.
- **390 hospitalized injured**.

The **emergency response was coordinated**, according to Law 225/92, by the **Department of Civil Protection** (DPC), within the general framework of the **National Service of Civil Protection**.

SEISMICITY (until 13.06.2017)

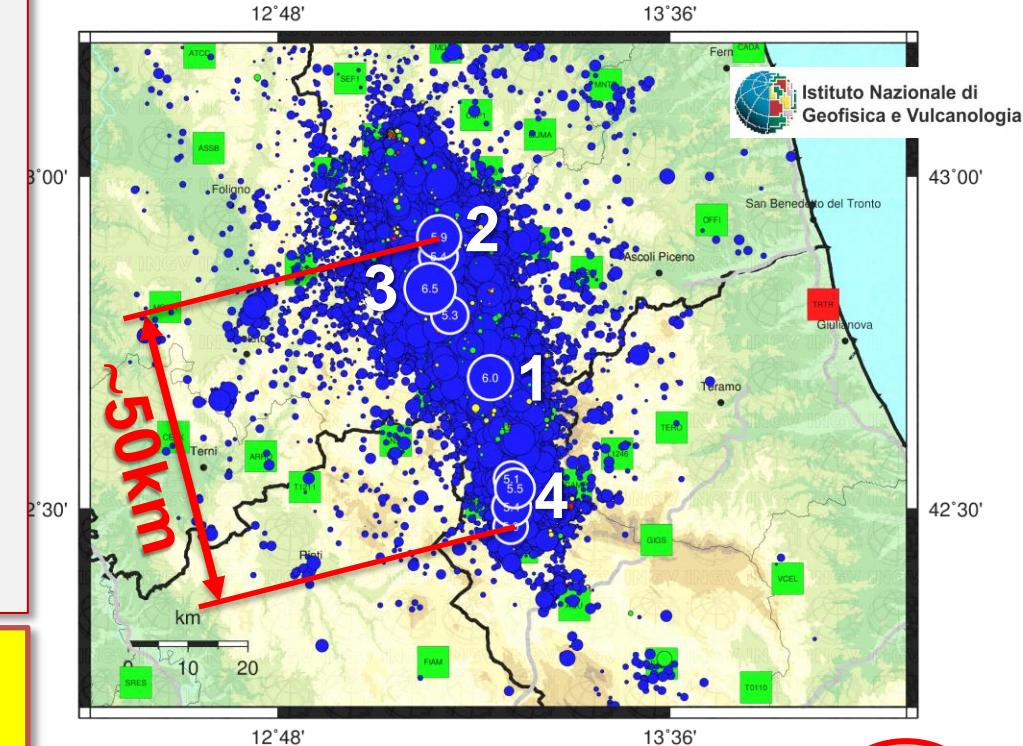
SEISMICITY UNTIL 13.06.2017

M. Dolce

www.protezionecivile.gov.it

Until June 13, 2017

→ 70,000 events:


- 2 with $Mw \geq 6.0$
- 7 with $5.0 \leq Mw < 6.0$
- 61 with $4.0 \leq MI < 5.0$
- 1068 with $3.0 \leq MI < 4.0$

Maximum distance between
Mw 5+ events → 50 km

No more fatalities after the
first event

Mappa Epicentrale della Sequenza Sismica

per il periodo 23-08-2016 : 14-06-2017

Aggiornata al 2017-06-14, 05:01:05 UTC, numero di eventi 70233

1 - 24 August 2016, Accumoli

Mw 6.0

2 - 26 October 2016, Visso

Mw 5.9

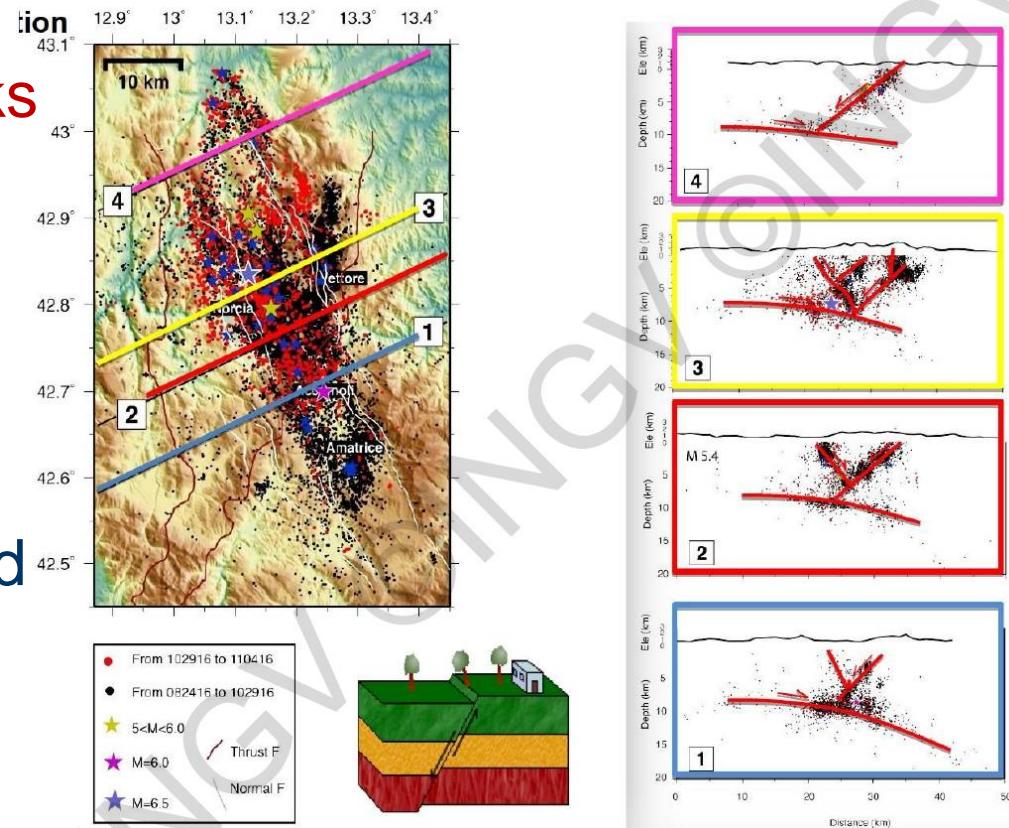
3 - 30 October 2016, Norcia

Mw 6.5

4 - 18 January 2017, Campotosto, 4 shocks

Mw 5+

No. of fatalities:


- **1997 Umbria-Marche** → 11
- **2009 Abruzzo** → 309
- **2012 Emilia** → 26
- **2016-17 Central Italy** → 299

SEISMOTECTONIC SETTING

The epicentral area is part of the **Apennines fold-and-thrust belt**, an orogenic chain which formed in **Meso-Cenozoic times** with a general NW-directed motion towards the Adriatic foreland.

The **seismogenic faults** responsible for the main shocks are coherent with the current **extensional stress field**.

They are **NNW-SSE-striking, WSW-dipping normal faults**, with a **length of 15-20 km** and a **dip angle of 45°-50°**. Some **antithetic or low dipping planes** are also present.

SOCIO-ECONOMIC FEATURES of the epicentral area

- The affected area is located in **Central Italy**, at the **boundaries of four Regions**, namely **Abruzzo, Lazio, Marche and Umbria**.
- Involved **provinces** are **7**: **Ascoli Piceno, Fermo, Macerata (Marche), Perugia (Umbria), Rieti (Lazio), L'Aquila, Teramo (Abruzzo)**.
- Epicentral area is **mountainous**, mostly exceeding **900m** elevation.
- **Population average density is low** (**75** inhab./sqkm, vs. **200** nat. av.).
- The average **income** per person is lower than national average.
- local labor market mainly based on agricultural economy → **High percentage of farms** (especially **breeding farms**)
- **Tourism** is an important economic activity due to the great **environmental interest** and low urbanization.
 - Availability of accommodation **higher** than the national average.
 - Many tourists are **house-owners** living in the surrounding cities.

Pre evento 24 Agosto 2016

AMATRICE – After 24.08.16

IMCS = X-XI

M. Dolce

www.protezionecivile.gov.it

Post evento 24 Agosto 2016

AMATRICE – After 30.10.16

IMCS = XI

Post evento 30 Ottobre 2016

AMATRICE – After 24.08.16

IMCS = X-XI

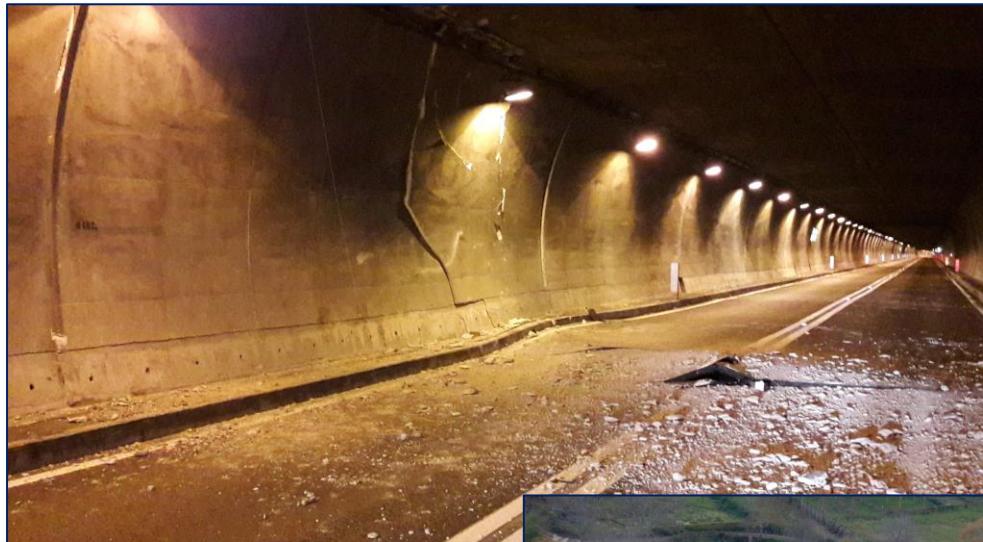


AMATRICE – After 24.08.16

IMCS = X-XI

M. Dolce

www.protezionecivile.gov.it



ROAD DISRUPTIONS

After October 30

After October 30 Road Interruptions

THE ITALIAN NATIONAL SERVICE OF CIVIL PROTECTION

(Law n. 225 / 1992)

By “Civil Protection” it is meant

The ensemble of the activities put in place to protect
life, goods, settlements and environments
from damage and risk of damage due to calamities

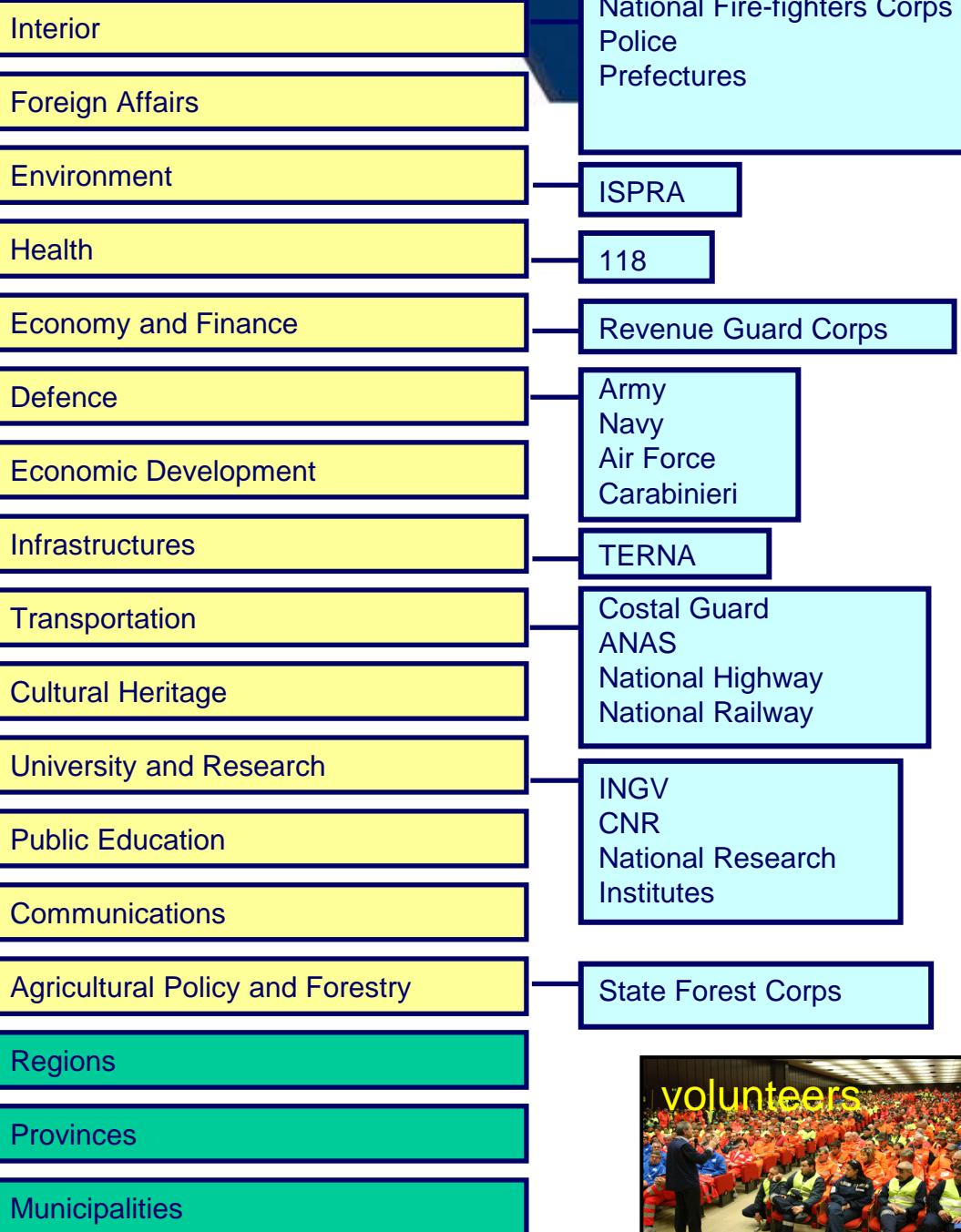
In Italy «Civil Protection»

IS NOT a task assigned to a **SINGLE ADMINISTRATION**
BUT a function played by a **COMPLEX SYSTEM**

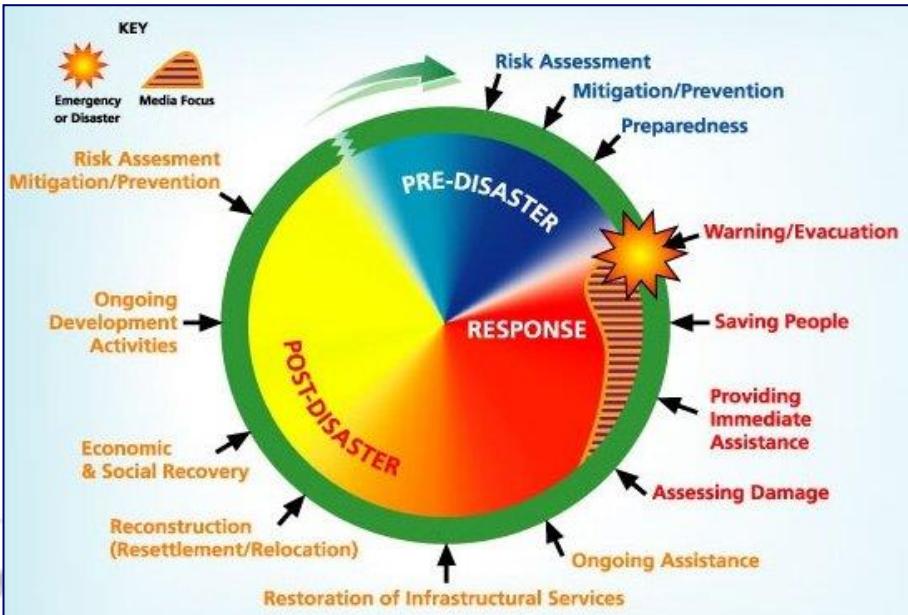
“NATIONAL SERVICE OF CIVIL PROTECTION” (SNPC)

Established by the Law n. 225 of 1992
and coordinated by the (National) **Department of Civil Protection**
of the Prime Minister Office

THE NATIONAL SERVICE OF CIVIL PROTECTION


PRESIDENCY
OF THE
COUNCIL OF
MINISTERS

Major Risk
Commission


Department
of Civil
Protection

Coordination activity

*Citizens and any other public
and private institution in the
territory contribute to civil
protection activities*

The National Service of Civil Protection of Italy (Law 225/1992) aims at safeguarding human life and health, goods, national heritage, human settlements and the environment from all natural or man-made disasters.

It deals with:

Forecasting and Warning

Prevention and Mitigation

Rescue and Assistance

Emergency overcoming

24 August h. 4.00 AM OPERATIONAL COMMITTEE MEETING

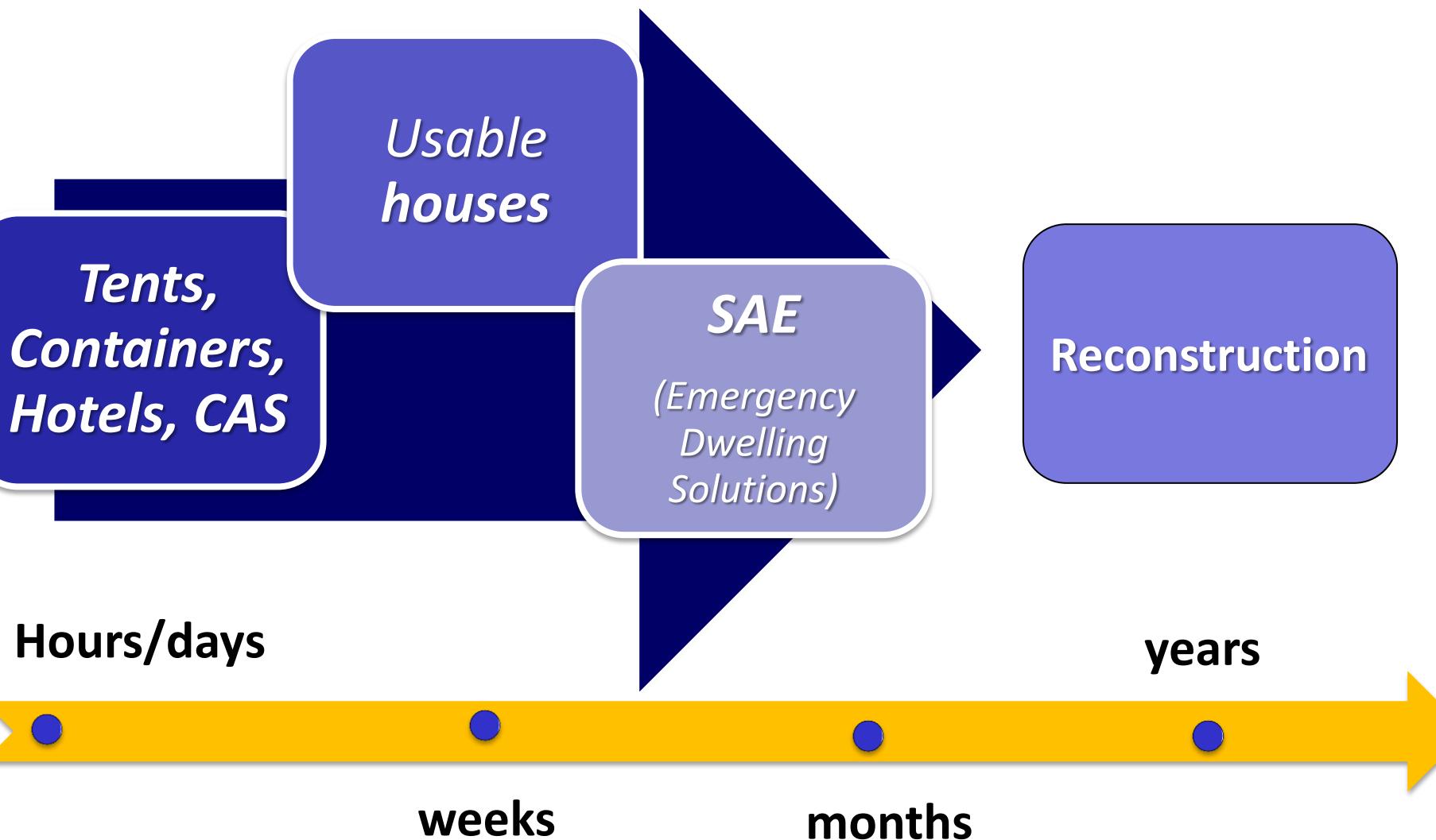
National coordination for the first emergency response
The Operational Committee met permanently until 28 August 2016

RESCUE

Search & rescue
Medevac

Sheltering people

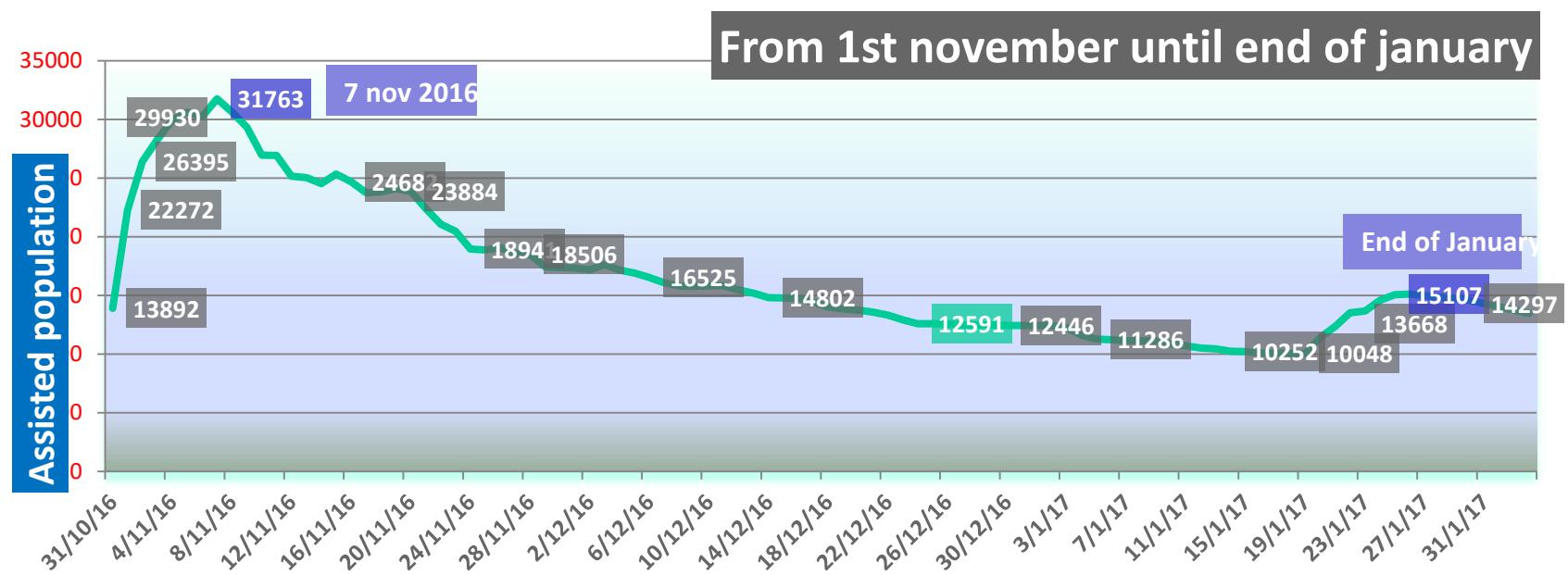
25 camps set up
by Regional and
National
Volunteers
organizations
Now dismantled



Sheltering people

After late october
shocks
**1296 people have
been hosted in
temporary
shelters**

GENERAL STRATEGY FOR DWELLING NEEDS



ASSISTANCE TO THE POPULATION NEEDING ACCOMODATION

From 24th of august to 31st of october 2016

From 1st november until end of january

Previous earthquakes had **different numbers of assisted people**, consistently with the

- **higher population density** of their epicentral area
- **earthquakes' characteristics.**

Max n. of people needing assistance soon after:

- **2009 Abruzzo earthquake** → ca. **67,000**
(epicenter in the L'Aquila city with >70,000 inhabitants)
- **2012 Emilia earthquake** → ca. **16,000**
- **2016-17 Central Italy (30.10)** → ca. **32,000**

The National coordination system on site Direction of Comand and Control (Di.Coma.C.)

28 August 2016 Di.Coma.C. was
established in Rieti at 12:00

Direction of Command and Control (DiComaC)

DICOMAC OPERATIONAL FUNCTIONS

- Coordination Unit
- Logistics and assistance to the population
- Planning and Technical Unit
- Volunteers
- Press and Communication
- Health
- Lifelines
- Road network management
- Emergency Telecommunications
- ICT
- Human Resources
- Admin, financial and legal support
- Post event damage assessment
- Air cell
- School
- Cultural Heritage

In addition to the **search and rescue** and to the **direct population assistance** activities, many **technical activities** are carried out to **support the civil protection management** of this first emergency phase.

Many of them are carried out by academy and research institutions, as **centres of competence**, to support civil protection needs under the **coordination of DPC at Dicomac**.

- **INGV**

(Seismic surveillance, Seismological research; emergency scientific support)

- **ReLUIS**

(Earthquake engineering research; emergency scientific-technical support)

- **EUCENTRE**

(Earthquake engineering research; emergency scientific-technical support)

- **CNR (IGAG, IRPI, IREA)**

(microzonation, geological effects, satellite interferometry;
emergency scientific-technical support)

- **ISPRA**

(geological mapping, geological effects; emergency scientific-technical support)

ISPRA

Istituto Superiore per la Protezione
e la Ricerca Ambientale

- **ENEA**

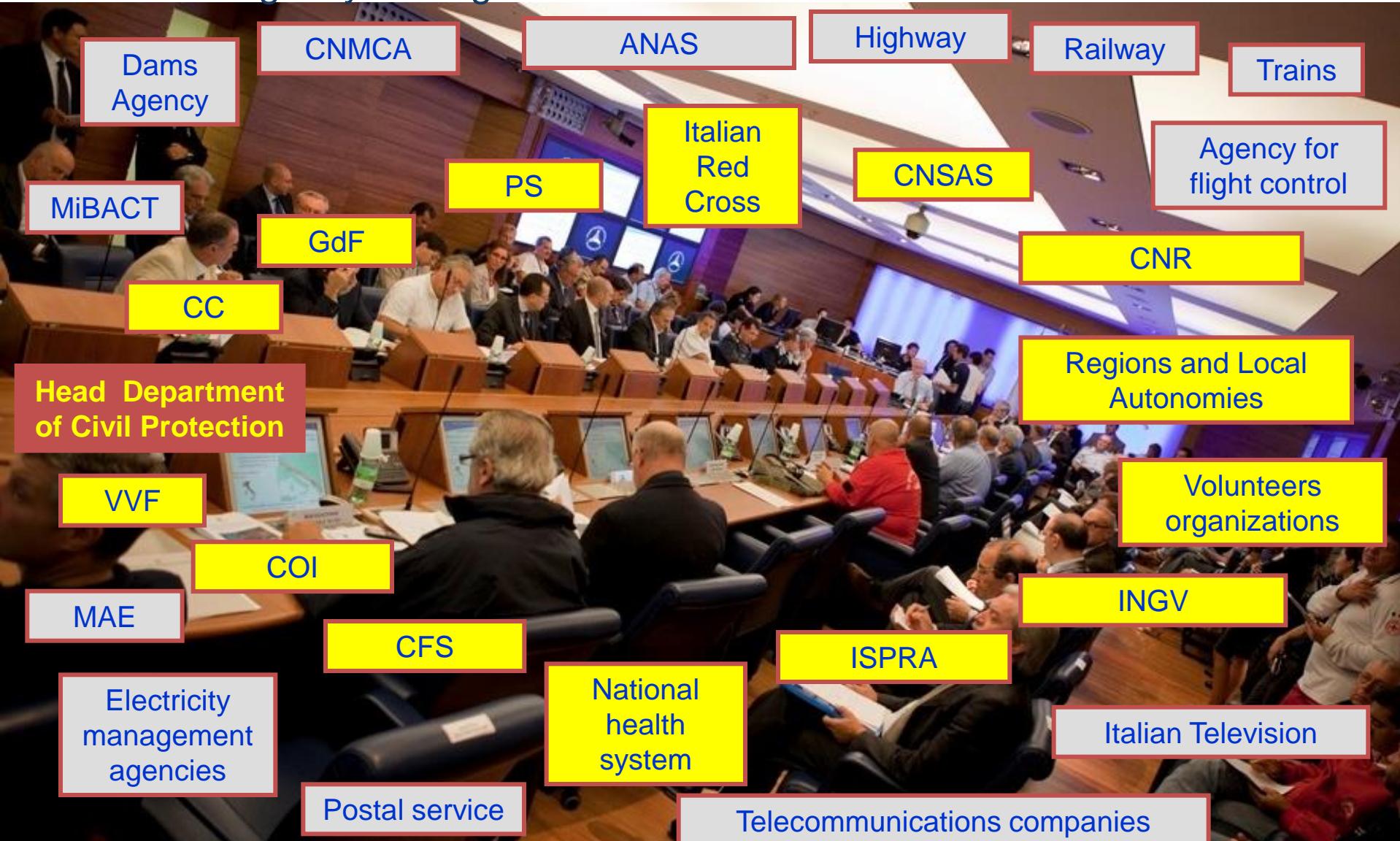
(rubble management; emergency scientific-technical support)

ENTE PER LE NUOVE TECNOLOGIE,
L'ENERGIA E L'AMBIENTE

- **ASI**

(satellite data provider)

POST-EVENT TIMETABLE OF TECHNICAL ACTIVITIES


2' → 5' – 30'	EPICENTER AND MAGNITUDE EVALUATION	<ul style="list-style-type: none"> • <i>Collecting and processing of seismometric network data by INGV</i>
10' → 60'	SIMULATED DAMAGE SCENARIOS AND DATA PROCESSING OF MONITORING SYSTEMS	<ul style="list-style-type: none"> • <i>Software simulation of the earthquake impact on constructions by DPC</i> • <i>Collecting and processing soil and building accelerometric data by DPC</i>
6h → 7-14d	SITE SURVEYS FOR MACROSEISMIC AND COSEISMIC EFFECTS	<ul style="list-style-type: none"> • <i>Site evaluation of Mercalli Intensity,</i> • <i>Geological surveys for landslides, surface faulting and soil liquefaction</i>
6h → 6-12m	TEMPORARY MONITORING OF SOIL AND STRUCTURES	<ul style="list-style-type: none"> • <i>Installing of temporary soil accelerometric stations and structure monitoring systems</i>
24h → 6-12m	POST – EARTHQUAKE DAMAGE AND SAFETY ASSESSMENT	<ul style="list-style-type: none"> • <i>Building inspections for damage and usability assessment.</i> • <i>Technical evaluations for temporary houses.</i>

THE OPERATIONAL COMMITTEE

M. Dolce

www.protezionecivile.gov.it

started its activities on August 24 at **4:00 a.m.**, to coordinate the emergency management based on the first information available

A first picture of the possible consequences was immediately obtained from the **epicentral coordinates and Richter magnitude that were made available to DPC by INGV**. Based on these parameters, a **damage scenario** immediately developed through the **DPC-SIGE** software returned an estimate of the earthquake consequences.

people in collapsed buildings:
38-1724
homeless:
6135-115,912
collapsed/unusable buildings:
5625-57,769
estimated epicentral intensity:
IX MCS

Scenario available in 10-15' after the event

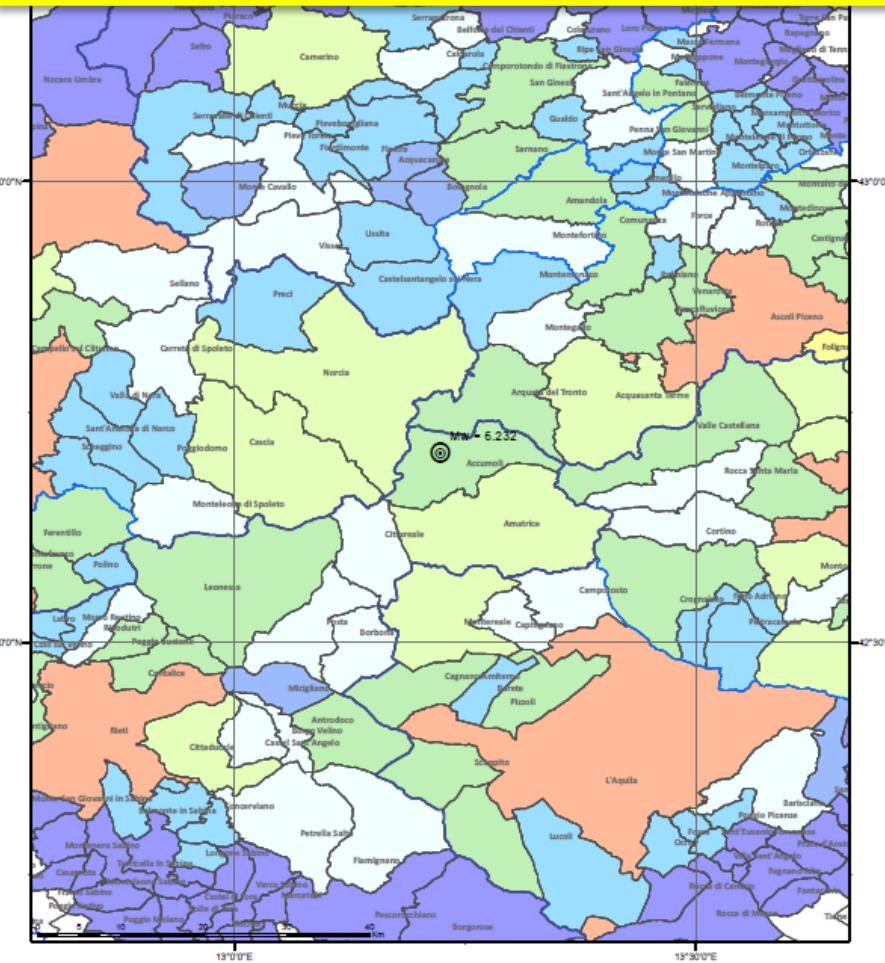
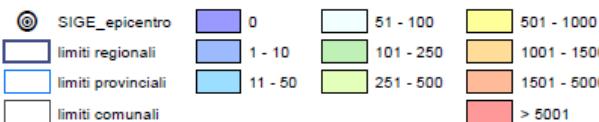



Fig.6 Scenario di danno T = T0: Popolazione Senza Tetto (valori medi stimati)

SIGE OUTCOMES

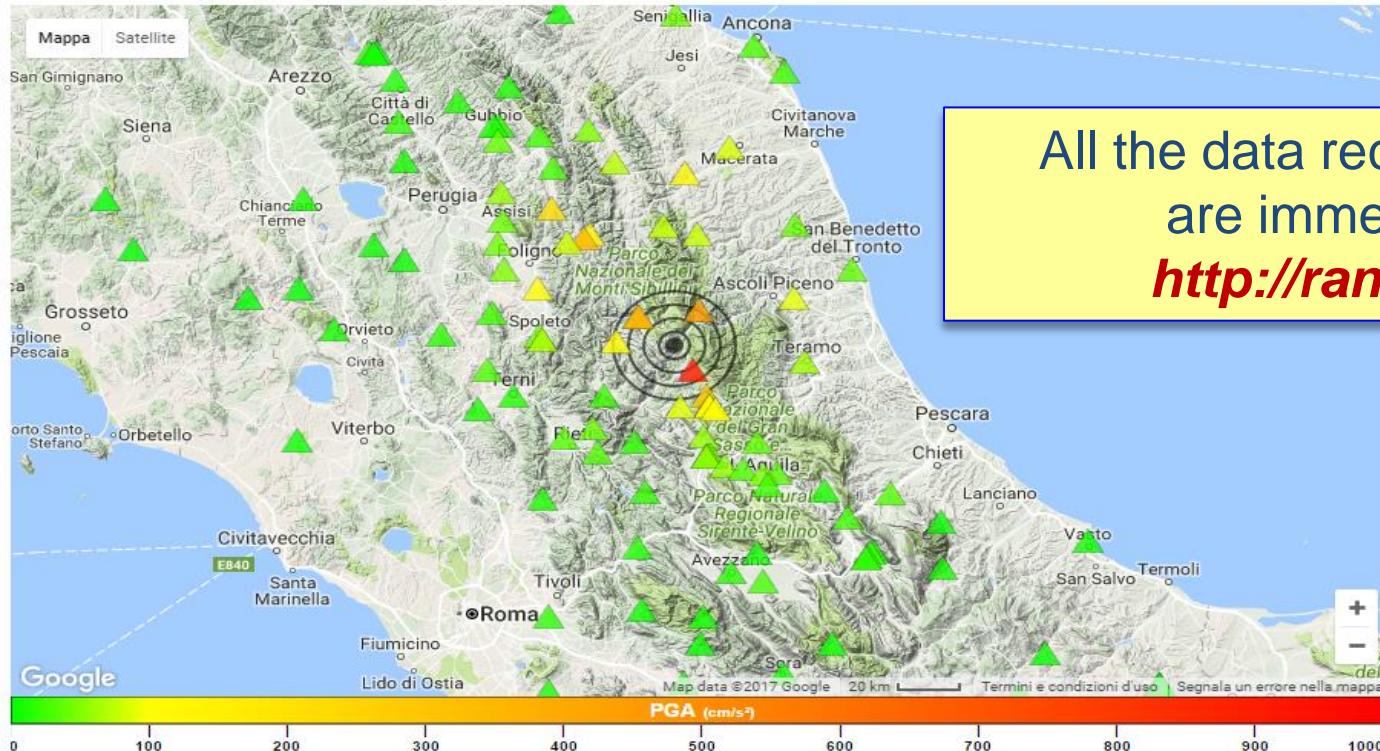
2009 Abruzzo earthquake →

SIGE outcomes **quite consistent with real figures** in terms of fatalities, injured people, homeless and unusable buildings

2012 Emilia earthquake →

SIGE outcomes largely **overestimated**:

estimated VIII-IX degree MCS epicentral intensity vs. VII-VIII MCS actual intensity


(probably due to the **kinematics of the seismogenic faults** and to the **subsurface geological setting** of the Po Plain)

NATIONAL STRONG-MOTION NETWORK (RAN-DPC)

The RAN-DPC strong-motion network (code IT) is formed by **more than 560 permanent digital stations**, whose data are tele-transmitted to the **DPC monitoring centre**.

RAN-DPC guarantees a dense cover of all high seismic hazard zones of the national territory, with instrumental density proportional to the hazard level.

RETE ACCELEROMETRICA NAZIONALE - RAN DOWNLOAD

National Strong-Motion Network (RAN-DPC) – August 24 (Mw=6.0)

M. Dolce

www.protezionecivile.gov.it

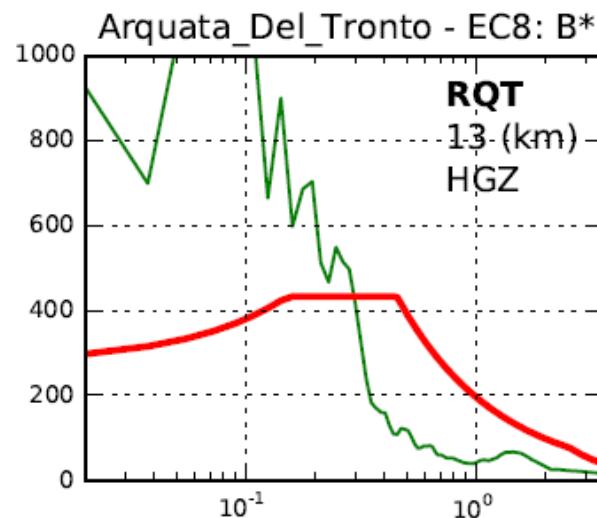
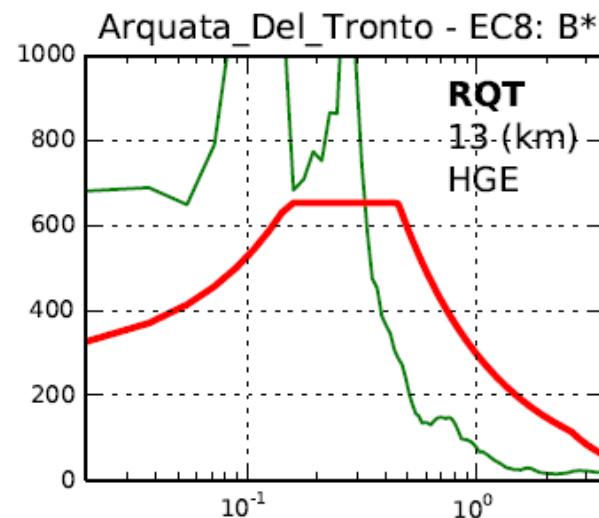
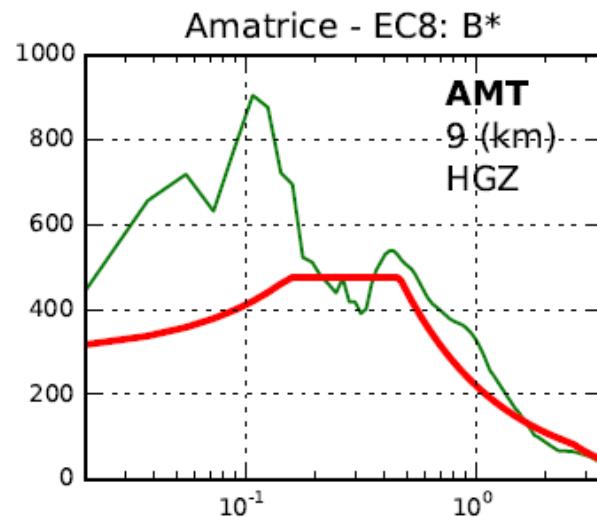
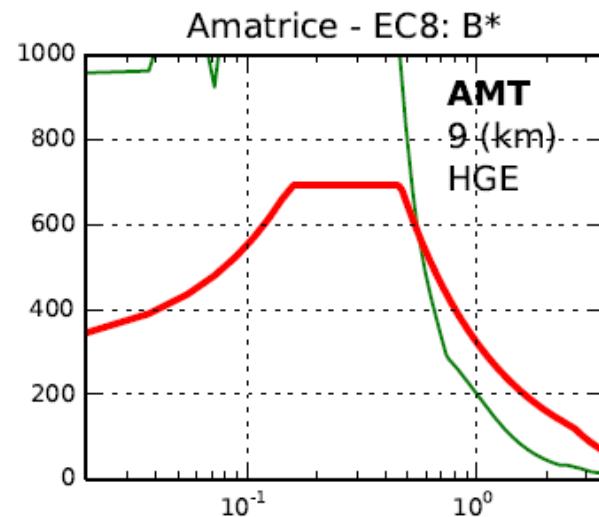
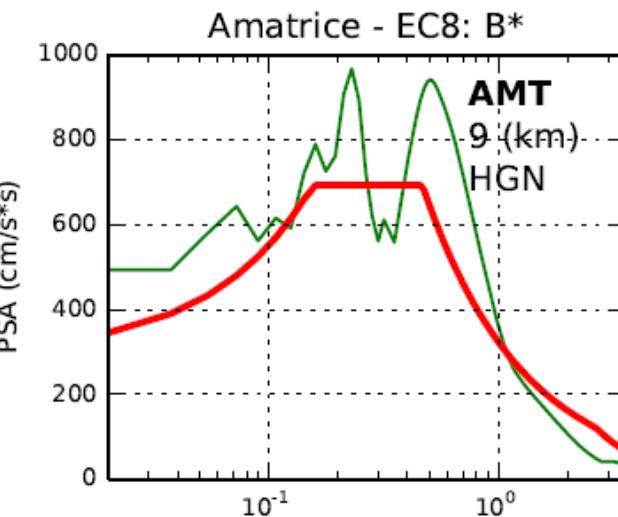
Event: Accumoli - Origin time: 2016/08/24 01:36:32 Lat:42.706 Lon:13.223 MI = 6.0 Agency: INGV

Seismic moment: 7.520e+18 Nm - Mw = 6.3 Agency: DPC

sta	chan	dista	filter	PGA	EPA	PGV	PGD	PSA03	PSA10	PSA30	EC8	location
				km	Hz	cm/s*s	cm/s*s	cm/s	cm	cm/s*s	cm/s*s	
AMT	HGE	10	0.2-50.0	915.97		640.03	44.25	2.96	1786.88	199.93	20.85	B* Amatrice
AMT	HGN	10	0.2-50.0	445.59		297.52	39.11	7.03	566.87	356.08	41.43	B* Amatrice
AMT	HGZ	10	0.2-50.0	399.94		214.41	27.45	4.46	414.57	328.56	57.23	B* Amatrice
RQT	HGE	14	0.2-50.0	447.87		294.03	13.85	2.05	938.23	75.56	21.78	B* Arquata_Del_Tronto
RQT	HGZ	14	0.2-50.0	396.54		163.71	9.16	1.92	411.45	42.19	19.67	B* Arquata_Del_Tronto
NOR	HGE	14	0.2-50.0	192.12		162.55	31.06	8.20	306.03	411.44	69.77	C* Norcia
NOR	HGN	14	0.2-50.0	165.66		154.00	15.21	4.33	442.27	242.97	51.25	C* Norcia
NOR	HGZ	14	0.2-50.0	258.33		143.12	14.68	2.82	279.99	120.86	18.62	C* Norcia
NRC	HGE	14	0.2-50.0	331.61		320.42	29.20	6.25	711.12	237.14	51.36	B Norcia
NRC	HGN	14	0.2-50.0	376.96		294.50	19.16	5.67	631.13	193.98	48.16	B Norcia
NRC	HGZ	14	0.2-50.0	208.60		178.76	8.74	2.27	563.85	100.20	17.27	B Norcia
CSC	HGE	17	0.2-50.0	104.40		79.75	5.46	0.90	196.47	74.73	7.50	B Cascia
CSC	HGN	17	0.2-50.0	91.91		76.04	5.47	1.11	197.07	51.42	7.28	B Cascia
CSC	HGZ	17	0.2-50.0	64.32		44.98	2.27	0.67	94.74	39.26	6.27	B Cascia
PCB	HGE	19	0.2-50.0	190.70		133.78	10.64	1.33	372.79	110.44	13.82	B* Poggio_Cancelli
PCB	HGN	19	0.2-50.0	287.02		173.62	10.67	1.73	528.22	148.39	19.45	B* Poggio_Cancelli
PCB	HGZ	19	0.2-50.0	80.89		58.70	5.43	1.09	218.86	103.23	17.50	B* Poggio_Cancelli
MSC	HGE	22	0.2-50.0	109.38		74.73	9.45	1.53	273.21	145.50	11.87	B* Mascioni
MSC	HGN	22	0.2-50.0	83.51		56.69	6.30	1.70	130.50	91.81	18.29	B* Mascioni
MSC	HGZ	22	0.2-50.0	54.94		50.00	5.60	1.89	156.47	93.57	20.10	B* Mascioni
MSCT	HGE	22	0.2-50.0	114.01		77.58	9.78	1.58	283.85	149.84	12.22	B* Mascioni
MSCT	HGN	22	0.2-50.0	86.36		58.32	6.46	1.74	132.82			
MSCT	HGZ	22	0.2-50.0	53.39		51.12	5.69	1.94	159.83			
SPD	HGE	24	0.2-50.0	56.80		53.48	5.17	0.77	113.04			
SPD	HGN	24	0.2-50.0	104.27		71.52	7.49	1.39	197.03			
SPD	HGZ	24	0.2-50.0	57.24		41.47	5.67	1.81	84.95			
LSS	HGE	27	0.2-50.0	23.24		20.58	1.79	0.65	62.02			
LSS	HGN	27	0.2-50.0	19.69		17.05	1.81	0.87	41.71			

MaxHor(PGA) = 0.91 g
MaxHor(PSA0.3s) = 1.78 g
MaxHor(PGD) = 8.2 cm
MaxVert.(PGA) = 0.39 g

PGA,PGV,PGD = peak ground acceleration, velocity and displacement






EPA = effective ground acceleration (Kramer, 1996)

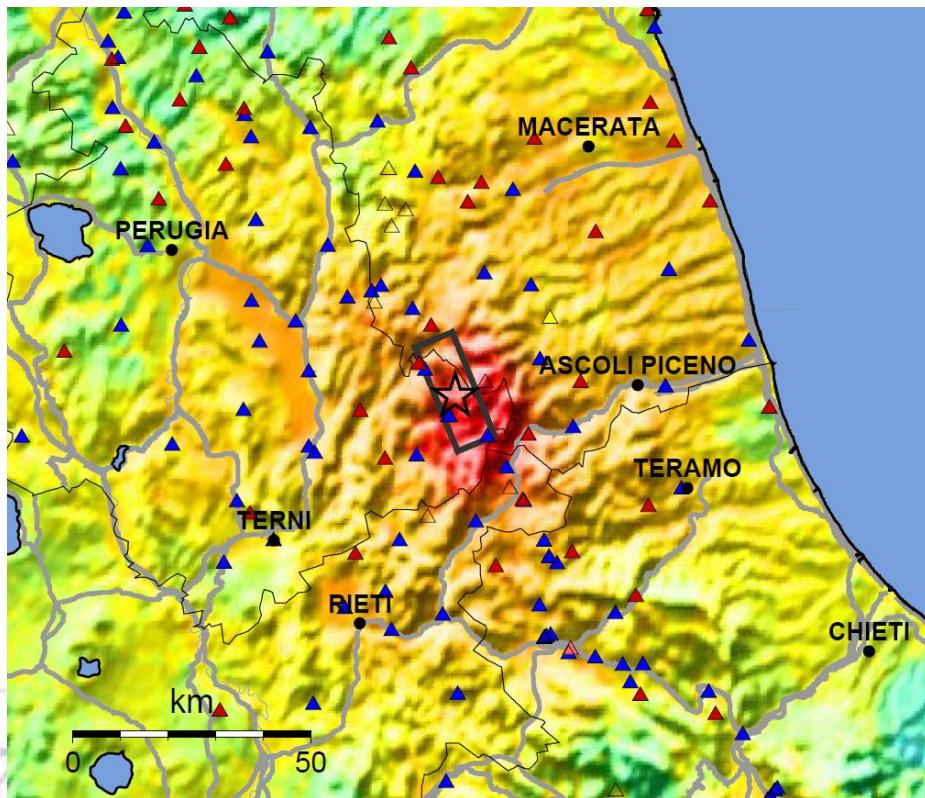
PSA03,PSA10,PSA30 = spectral acceleration (0.3, 1.0, 3.0 sec)

Data available in 5-10' after the event

RESPONSE SPECTRA

August 24, 2016

SHAKEMAP – October 30, 2016


M. Dolce

www.protezionecivile.gov.it

Map Version 19 Processed 2016-11-07 18:52:57 UTC

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.06	0.2	0.8	2.0	4.8	12	29	70	>171
PEAK VEL.(cm/s)	<0.02	0.08	0.3	0.9	2.4	6.4	17	45	>120
INSTRUMENTAL INTENSITY	I	II-III	IV	V	VI	VII	VIII	IX	X+

Scale based upon Faenza and Michelini, 2010, 2011

INGV ShakeMap : Perugia

30 Oct 2016 06:40:17 UTC M 6.5 N42.83 E13.11 Depth: 9.2km ID:8863681

Much **higher values** of PGA and of other intensity quantities

2009 Abruzzo:

- Max PGA → 664 cm/s²
- Max PGV → 38.6 cm/s
- Max PGD → 11.9 cm

2012 Emilia:

- Max PGA → 290 cm/s²
- Max PGV → 57 cm/s
- Max PGD → 18 cm

2016-17 Central Italy:

- Max PGA → 910 cm/s²
- Max PGV → 66.1 cm/s
- Max PGD → 18.1 cm

SEISMIC OBSERVATORY OF STRUCTURES (OSS-DPC)

OSS-DPC is a national permanent network which monitors the seismic response of **more than 150 structures**, including schools, hospitals, town halls, bridges. The OSS-DPC allows a remote estimation being made of the damage suffered by the monitored structures after an earthquake and, by analogy, of the damage possibly suffered by similar structures in the same area.

The **nearest monitored structure was a hospital at Norcia, 14 km far from the epicentre**, while a total of 37 monitoring systems were triggered within 200 km distance from the epicentre.

SEISMIC OBSERVATORY OF STRUCTURES (OSS-DPC) – 24.08.16

M. Dolce

[www.p.protezionecivile.gov.it](http://p.protezionecivile.gov.it)

EA080	Hospital	Norcia	R.C.	PGA=0.23g	Drift=0.04%
15SNO	School	Norcia	R.C.+Diss.Braces	PGA=0.52g	Drift=0.23%
BC037	School	Visso	masonry	PGA=0.33g	Drift=0.61%

Sigla	Data	Tempo trigger UTC	PGA_X (g)	PGA_Y (g)	PGA_Z (g)	PSA_X (g)	PSA_Y (g)	Dmax (x1000)	Danno Stimato
EA080	2016-08-24	01:36:36	0.1812	0.2312	0.2762	0.4054	0.5736	0.44	Nullo
15SNO	2016-08-24	01:36:12	0.2894	0.5224	0.3304	0.4322	0.8853	2.26	Nullo
BC037	2016-08-24	01:36:36	0.3265	0.3172	0.1347	1.0521	0.8044	6.1	Moderato
BC047	2016-08-24	01:36:40	0.0432	0.0579	0.0267	0.1669	0.1835	0.15	Nullo
EA083	2016-08-24	01:36:41	0.0534	0.0688	0.0314	0.1069	0.2359	0.3	Nullo
20IPI	2016-08-24	01:36:20	0.0139	0.0127	0.0081	0.0543	0.0748	0.48	Nullo
EA073	2016-08-24	01:36:44	0.0292	0.0385	0.0205	0.0676	0.1211	0.44	Nullo
BC046	2016-08-24	01:36:41	0.0194	0.0264	0.0217	0.0872	0.1067	0.11	Nullo
BC036	2016-08-24	01:36:43	0.0429	0.0401	0.0259	0.1254	0.1471	0.06	Nullo
EA067	2016-08-24	01:36:43	0.0262	0.0203	0.022	0.1212	0.1656	0.26	Nullo
BC053	2016-08-24	01:36:45	0.0421	0.0541	0.0272	0.1155	0.2	0.34	Nullo
50OBR	2016-08-24	01:36:42	0.0346	0.0455	0.0298	0.1828	0.1928	0.58	Nullo
EA077	2016-08-24	01:36:53	0.0088	0.0093	0.0047	0.0311	0.0284	0.16	Nullo
16IPE	2016-08-24	01:37:15	0.0041	0.0047	0.0028	0.0224	0.0158	0.03	Nullo
BC038	2016-08-24	01:36:49	0.0192	0.0153	0.0076	0.0279	0.0284	1.46	Nullo

Data available in 10-15' after the event

Livelli di danno	Edifici in c.a.	Edifici in muratura
Nessun danno	0 <= Dmax < 5	0 <= Dmax < 2
Danno lieve	5 <= Dmax < 9	2 <= Dmax < 4.5
Danno moderato	9 <= Dmax < 15	4.5 <= Dmax < 8
Danno grave	15 < Dmax	8 < Dmax

SEISMIC OBSERVATORY OF STRUCTURES (OSS-DPC) – 30.10.16

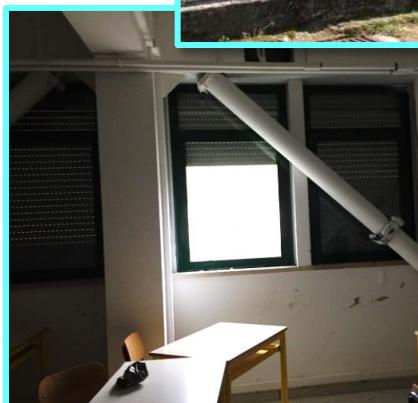
EA080	Hospital	Norcia	R.C.	PGA=0.32g	Drift=0.08%
15SNO	School	Norcia	R.C.+Diss.Braces	PGA=0.57g	Drift=0.56%
BC037	School	Visso	masonry	PGA=0.30g	Drift=1.10%

Sigla	Data	Tempo trigger UTC	PGA_X (g)	PGA_Y (g)	PGA_Z (g)	PSA_X (g)	PSA_Y (g)	Dmax (x1000)	Danno Stimato
15SNO	2016-10-30	06:40:09	0.5732	0.5638	0.4528	0.8065	0.7484	5.62	Lieve
EA080	2016-10-30	06:40:20	0.3222	0.309	0.6595	0.4239	0.573	0.79	Nullo
BC037	2016-10-30	06:40:19	0.2913	0.3012	0.3302	1.3862	1.4727	10.98	Grave
EA083	2016-10-30	06:40:24	0.0863	0.0991	0.0511	0.2142	0.3774	0.46	Nullo
EA073	2016-10-30	06:40:26	0.0445	0.0538	0.0348	0.1478	0.125	0.8	Nullo
EA067	2016-10-30	06:40:27	0.0382	0.0397	0.0314	0.1877	0.1826	0.33	Nullo
BC039	2016-10-30	06:40:26	0.15	0.11	0.0609	0.2345	0.2777	2.21	Lieve
20IPI	2016-10-30	06:40:15	0.0272	0.0214	0.0157	0.1047	0.1105	1.08	Nullo
BC044	2016-10-30	06	0.0397	0.0468	0.0217	0.1709	0.2729	0.32	Nullo
BC045	2016-10-30	06:40:23	0.0435	0.0382	0.0264	0.171	0.2418	1.87	Nullo
EA116	2016-10-30	06:40:28	0.0405	0.0312	0.0223	0.1561	0.1759	0.36	Nullo
46CAQ	2016-10-30	06:40:21	0.0358	0.0551	0.0224	0.1437	0.1757	0.75	Nullo
47CAQ	2016-10-30	06:40:20	0.0368	0.0502	0.0308	0.0816	0.1569	1.6	Nullo
BC053	2016-10-30	06:40:25	0.0543	0.039	0.0493	0.2167	0.2699	0.57	Nullo
BC054	2016-10-30	06:40:27	0.0803	0.1153	0.0495	0.3487	0.5289	0.5	Nullo
50CAQ	2016-10-30	06:40:22	0.0498	0.0591	0.0442	0.1493	0.2456	0.59	Nullo
BC043	2016-10-30	06:40:28	0.0283	0.0223	0.0148	0.1167	0.1755	2.44	Nullo

Data available in 10-15' after the event

SEISMIC OBSERVATORY OF STRUCTURES (OSS-DPC)

BC037 | School | Visso | Mas. | 15 Km

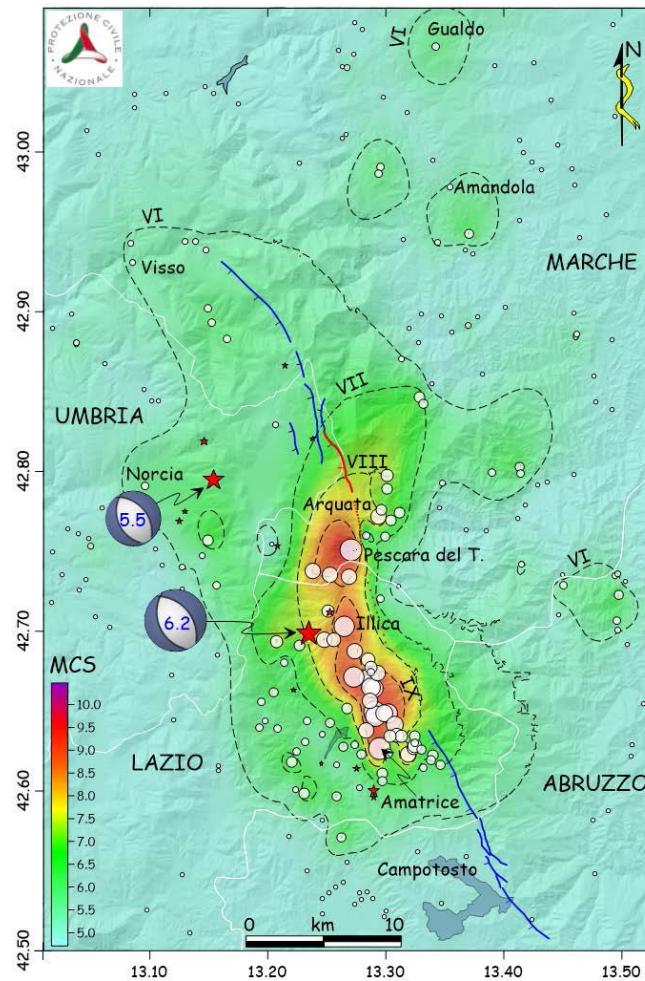

15SNO | School | Norcia | R.C. | 15 Km

Max.Drift 1.1%

Max.Drift 0.6%

With respect to the previous recent earthquake sequences in 2009 and 2012, a larger number, better quality, of records has been obtained by OSS

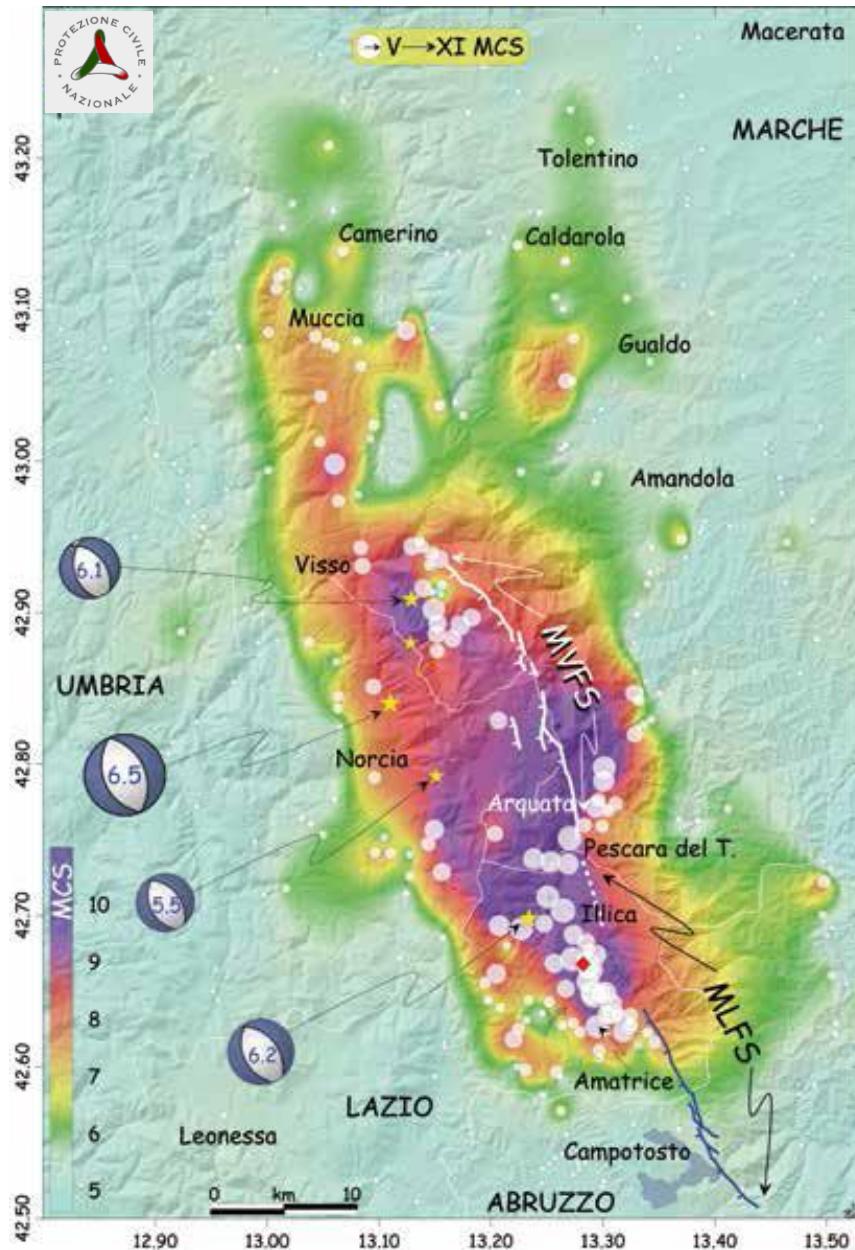
- **First time, in Italy, that some complete instrumental records on buildings subjected to strong motions reaching near collapse or significant damage conditions.**
- **Their exploitation in scientific studies can provide important contributions to the understanding of the seismic behavior of masonry and R.C. buildings.**


MACROSEISMIC SURVEY after August 24, 2016

M. Dolce

www.protezionecivile.gov.it

DPC officers and CNR-IGAG and INGV researchers have conducted **field surveys** to assign a macroseismic MCS intensity to each municipality and locality of the epicentral area.


Values exceeding intensity X MCS have been found in and near the epicenter.

MACROSEISMIC SURVEY after August 30, 2016

Maximum observed
(cumulated) intensity is XI
in the MCS scale.

The macroseismic field of
cumulated intensities $I_{MCS} \geq 7$ is
70 km long and 30 km wide

2016-17 sequence **MCS macroseismic field** vs. 1997 Umbria-Marche, 2009 Abruzzo 2009 and 2012 Emilia 2012 ones, all displaying MI 5.9 (more than one main shock in each of them)

Difference in the **max intensity** and size of **damaged areas**:

- 1997 Umbria-M. → **Max(I)=IX-X** $I \geq VII$ area: ~45x20km
- 2009 Abruzzo → **Max(I)=IX-X** $I \geq VII$ area: ~55x15km
- 2012 Emilia → **Max(I)=VII-VIII** $I \geq VII$ area: ~20x10km
- 2016–17 C.Italy → **Max(I)=XI** $I \geq VII$ area: ~70x30km

The 2016–2017 Central Italy seismic sequence has been **much more energetic (and destructive)** than the previous ones

At a more local scale, many **rockfalls** and **landslides** were observed, as always happens when moderate-to-strong earthquakes hit the **Apennines** chain.

These phenomena have been surveyed in particular by geologists from **ISPRA** and **CNR**, especially those cases potentially or really affecting **transportation network and building stock**.

Pescara del Tronto, September 6th, 2016

ANALOGIES AND DIFFERENCES with Recent Italian Earthquakes

Same geographic and seismotectonic location for **2016-17 Central Italy**, **1997 Umbria-Marche** and **2009 Abruzzo**, i.e., the core of the Apennines

→ rock-falls are distinctive coseismic effect

Same extensional tectonic regime: normal kinematics

→ the overall surface deformation corresponds to a general subsidence and surface faults / fractures

The **2012 Emilia** seismic sequence occurred in the largest alluvial plain of Italy in a compressional tectonic regime:

→ widespread liquefaction phenomena
→ no surface faulting

Damage and usability assessment of buildings allows:

- the population to **safely stay or re-enter** in their homes;
- shelter and **temporary housing needs** to be properly scaled, both in the emergency (tent camps, hotels, etc.) and in the post-emergency (temporary housing);
- **productive, administration and school activities** to be rapidly reactivated;
- **funds needed for the reconstruction** to be defined;
- priority and funding criteria to be established for **repair interventions**.

Well-grounded procedures using the **AeDES form**, based on the experience acquired **since the 1997 Umbria-Marche earthquake**, are established by the Prime Minister **Decree of May 5th, 2011**

Post-event damage/usability assessment of ordinary buildings

Post-earthquake usability evaluation is a **quick and temporarily limited assessment**, based on **expert judgement of specially trained technical teams**, on visual screening and on easily collected data, aimed to detect if, during the current seismic crisis, damaged buildings can be used, being reasonably safeguarded the human life.

A) USABLE	Building can be used without measures. Small damage, but negligible risk for human life.
B) USABLE WITH COUNTERMEASURES	Building is damaged, but can be used when short term countermeasures are taken.
C) PARTIALLY USABLE	Only a part of the building can be safely used .
D) TEMPORARILY UNUSABLE	Building to be re-inspected. Unusable until the new inspection.
E) UNUSABLE	Building can not be used due to high structural, non structural or geotechnical risk for human life. Not necessarily imminent risk of total collapse.
F) UNUSABLE FOR EXTERNAL RISK	Building could be used, but it cannot due the high risk caused by external factors (heavy damaged adjacent or facing buildings, possible rock falls, etc.).

Damage and usability assessment of ordinary buildings

M. Dolce

www.protezionecivile.gov.it

A huge effort has been made to organize the damage and usability assessment survey. The assessment is performed by experts coming from different Regions, researchers of DPC Competence Centres (ReLUIS and EUCENTRE), and engineers, architects and surveyors coordinated through the relevant national professional Councils.

INSPECTIONS until 16.10.2016

Total number **28645 done - 77000 requested**

Schools **677 done**

Public buildings **202 done**

After October 30, the number of requests has increased significantly until a total of **~175,000** (13.01.17)

→ A new procedure called **FAST** has been implemented in parallel with **AeDES**

Damage and usability assessment of ordinary buildings (until June 12, 2017)

Total usability assessments: 184,686

Total requests: 202,917

with **AEDES forms** for public and private buildings: 66,910

- **2,547** schools (**66% usable**, 6% unusable, 28% partly or temporarily unusable)
- **2,949** public buildings (**49% usable**, 20% unusable, 31% partly or temporarily unusable)
- **61,414** private buildings (**42% usable**, 6% unusable for external risk, 29% unusable, 21% partly or temporarily unusable, 2% not assessed)

with **FAST forms** (since November 9, 2016): 117,776

- **92,902** assessed (**56% usable**, 3% unusable for external risk, 40% partly, temporarily or totally unusable)
- **24, 827** not assessed (not accessible or needing further surveys)

Differences with respect to the 1997, 2009 and 2012 earthquake sequences:

1. **space, time and intensity** characteristics of each sequence: in the previous sequences the main shocks occurred within 10-20 days maximum
→ the time lapse between the main shocks of this sequence required the **restart of the inspection activities** and a change of procedure (**FAST** in parallel with **AeDES**)
2. **administrative complexity**: the area affected by the 2016–2017 sequence involves four regions
4. **No. of building inspections:**
 - 2009 → ca. 80,000
 - 2012 → ca. 40,000
 - 2016-17 → ca. 220,000

5. Road infrastructure conditions and areal distribution of damage determined logistic difficulties for inspection teams

6. Season affects urgency to complete inspections, commuting of teams and daylight working hours:

- 2009 → Spring-Summer
- 2012 → Spring-Summer
- 2016–2017 → Autumn-Winter

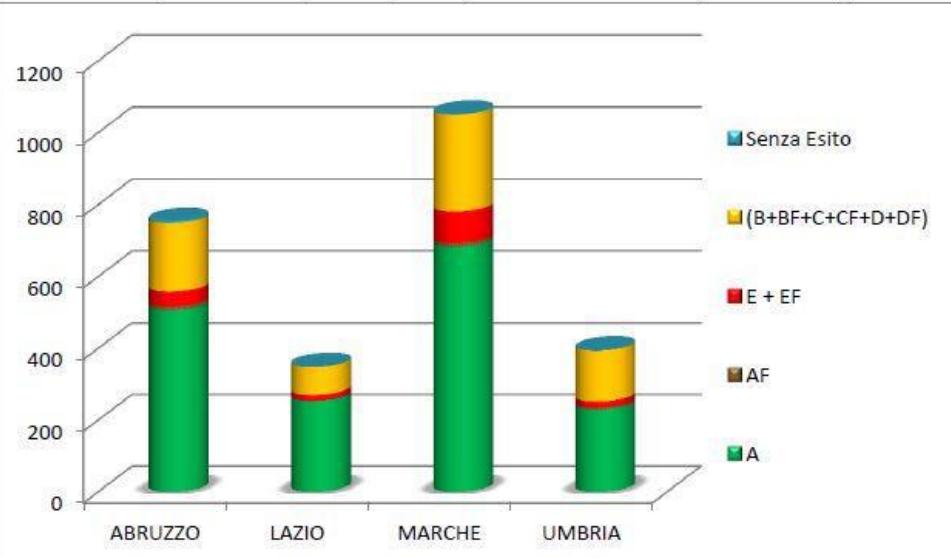
7. Preparedness:

- 1997 → no trained inspectors
- 2009 → few trained inspectors (half-day training courses)
- 2012 → limited number of trained inspectors (same)
- 2016-17 → new rules limited the recruitment of AeDES teams only among already trained experts
→ inadequate number of inspectors available

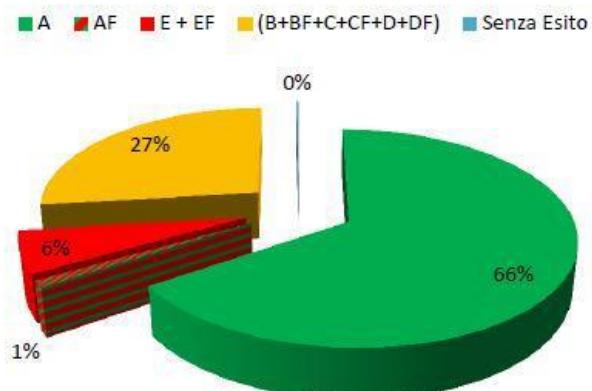
Special attention has been devoted to **schools**, whose activity in Italy starts at mid-September.

Restarting school regularly was meant as a restart of “**normal**” life, thus avoiding **depopulation** of the affected municipalities.

Head of Department of Civil Protection met in the DICOMAC Minister of Education, Universities and Research.


The temporary new school at Amatrice ready on September 12, 2016

USABILITY OF SCHOOL BLDS


AeDES inspections after 30.10.16

Esiti Sopralluoghi Scuole AeDES + GL AeDES Cumulati per Regione e Aggregati per Esito

Regione	Schede AeDES + GL_AeDES SCUOLE					TOTALE Schede
	A	AF	E + EF	(B+BF+C+CF+D+DF)	Senza Esito	
ABRUZZO	506	11	41	191	5	754
LAZIO	254	0	16	78	0	348
MARCHE	683	10	88	269	1	1051
UMBRIA	229	6	17	142	0	394
Totale	1672	27	162	680	6	2547
%	66%	1%	6%	27%	0%	

% Totale schede per esiti accorpati

9 schools in different municipalities in the four regions using donations

School emergency management was similar to what experienced in **2009** and **2012**: first mainshocks occurred during the **night**, resulting in **no casualties** in school buildings

Common feature

→ **big effort to allow students to continue their scholastic activities** at the best.

Differences with respect to **2009** and **2012** earthquakes

→ **season of occurrence** and, then, possibility of benefiting from **favorable climatic conditions** and **summer holidays** for school management in the **short-medium term**

Cultural heritage was heavily damaged by the 24.8 earthquake.

The October 26 and 30 Earthquakes have dramatically extended and increased the level of damage, up to the collapse of many churches. Faster procedure for safety countermeasures were adopted

A strong **collaboration** was set up within the DICOMAC among the **Ministry of Cultural Heritage**, the **operational structures**, the **Competence Centres** and **DPC officers** to manage cultural heritage emergency operations, regarding **artworks and buildings** (churches, palaces, walls, etc.).

- 1. Assessment of damage and usability of churches, historical palaces and other heritage manuacts;**
- 2. Displacement and sheltering of mobile heritage (artworks) at risk;**
- 3. Evaluation of safety conditions and execution of safety countermeasures;**
- 4. Protection of mobile heritage using temporary coverage;**
- 5. Securing «architectural elements» (selection, displacement and sheltering);**
- 6. Making cost analyses of damage.**

DAMAGE INSPECTIONS ON HISTORICAL BUILDINGS

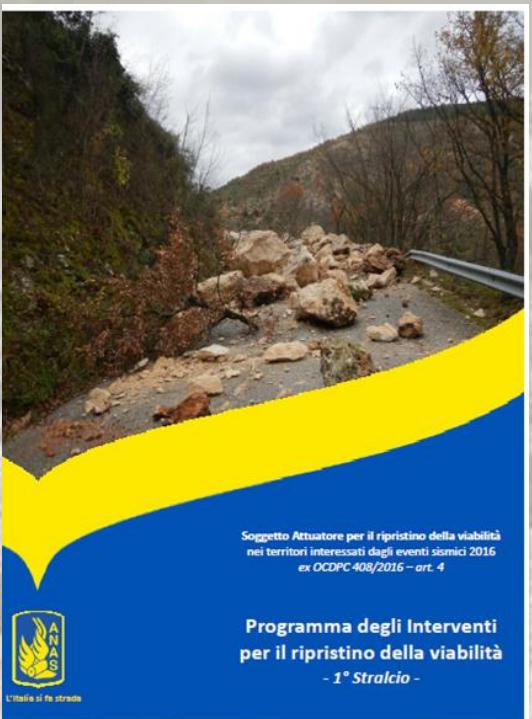
4500 DAMAGE INSPECTIONS
ON CHURCHES, HISTORICAL
PALACES, OTHER...
(52% DAMAGED BUILDINGS)

RECOVERY OF MOVABLE CULTURAL HERITAGE

**13.000 PIECES RECOVERED
FROM 329 BUILDINGS,
5.000 BOOKS,
2.600 m. ARCHIVES**

SAFETY COUNTERMEASURES ON HERITAGE BUILDINGS

**450 SIGNIFICANT SAFETY
COUNTERMEASURES ON HISTORICAL
BUILDINGS (CHURCHES, HISTORICAL
PALACES, MUSEUMS..)**


ANALOGIES AND DIFFERENCES with Recent Italian Earthquakes

In the **2016-17** seismic sequence, the **size of the damage area** referred to **built heritage** (especially churches) is much wider than that referred to ordinary buildings (even more than 100km from main shock epicenters).

There is a **considerable overlap** of the area affected by this seismic sequence and those affected by the **1997** and **2009** earthquakes:

- **increase of previous damage**, of not yet repaired and strengthened buildings after the previous earthquakes
- **re-occurrence of the damage**, even worse than before, of simply repaired and weakly strengthened buildings

The situation of roads network after the late shocks was quite critical. The extension of the network (**15.300 km**) and damage required a systemic approach in the evaluation of damage and identification of proper recovery measures.

Implementing partner for road safety

3.000 km assessed

622 sites visited

574 critical points identified

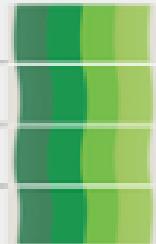
517 actions proposed

PROGRAM FOR ROADS RECOVERY

408 projects

389 M€

CONCLUSION


Challenges of the 2016-17 emergency management

- **FOUR** affected regions = **vast territory**
- Need for **coordinating 4** different civil protection **regional systems**
- High number of **resources** mobilized to cover a wide affected area
- **Critical infrastructures** (roads and electricity network)
- **Access and logistics** in the area
- Removal and disposal of **debris**
- Local administrations **continuity**
- **Vulnerability** of the territory (buildings, agricultural areas, hydrogeological risk...)
- **Huge damaged cultural heritage**
- **Media** attention
- Public and Private building/houses **damage assessment** (>200,000 requests)
- **Long** sequence of seismic (and other - snowfall) events
 - **Repeated and recurring situations!**

ANALOGIES AND DIFFERENCES with Recent Italian Earthquakes

The **2016-17 Central Italy seismic sequence** determined a **seismic emergency** somewhat **different from the emergencies** managed by the Italian **National Service of Civil Protection (SNPC)** in the past 30 years.

Unexpected complexities had to be dealt with by **balancing well-established procedures** with a **sufficient flexibility** to adapt them to the specific case.

16TH EUROPEAN CONFERENCE ON

EARTHQUAKE ENGINEERING THESSALONIKI

18 - 21 JUNE 2018

The 2016–2017 Central Apennines Seismic Sequence: Analogies and Differences with Recent Italian Earthquakes

Prof. Mauro Dolce
Italian Department of Civil Protection &
University of Naples, Federico II

PROTEZIONE CIVILE
Presidenza del Consiglio dei Ministri
Dipartimento della Protezione Civile